Что необходимо знать о законах отражения света

 

Свет является важной составляющей нашей жизни. Без него невозможна жизнь на нашей планете. При этом многие явления, которые связаны со светом, сегодня активно используются в разнообразных сферах человеческой деятельности, начиная от производства электротехнических приборов до космических аппаратов. Одним из основополагающих явлений в физике является отражение света.

Угол падения и отражения света

Отражение света

Закон отражения света изучается еще в школе. Что следует знать о нем, а также много еще полезной информации сможет рассказать вам наша статья.

Основы знаний о свете

Как правило, физические аксиомы являются одними из наиболее понятных, поскольку они имеют наглядное проявление, которые можно легко пронаблюдать в домашних условиях. Закон отражения света подразумевает ситуацию, когда у световых лучей происходит смена направления при столкновении с различными поверхностями.

Обратите внимание! Граница преломления значительно увеличивает такой параметр, как длина волны.

В ходе преломления лучей часть их энергии возвратятся обратно в первичную среду. При проникновении части лучей в иную среду наблюдается их преломление.
Чтобы разбираться во всех этих физических явлениях, необходимо знать соответствующую терминологию:

  • поток световой энергии в физике определяется как падающий при попадании на границу раздела двух веществ;
  • часть энергии света, которая в данной ситуации возвращается в первичную среду, называется отраженной;

Обратите внимание! Существует несколько формулировок правила отражения. Как вы его не сформулируйте, но он все равно будет описывать взаимное расположение отраженных и падающих лучей.

  • угол падения. Здесь подразумевается угол, который формируется между перпендикулярной линией границы сред и падающим на нее светом. Он определяется в точке падения луча;
Правила падения и отражения света

Углы луча

  • угол отражения. Он формируется между отраженным лучом и перпендикулярной линией, которая была восстановлена в точке его падения.

Кроме этого необходимо знать, что свет может распространяться в однородной среде исключительно прямолинейно.

Обратите внимание! Различные среды могут по-разному отражать и поглощать излучение света.

Отсюда выходит коэффициент отражения. Это величина, которая характеризует отражательную способность предметов и веществ. Он означает, сколько излучения принесенного световым потоком на поверхность среды составит та энергия, которая будет отражена от нее. Данный коэффициент зависит от целого ряда факторов, среди которых наибольшее значение имеют состав излучения и угол падения.
Полное отражение светового потока наблюдается тогда, когда луч падает на вещества и предметы, обладающие отражающей поверхностью. К примеру, отражение луча можно наблюдать при попадании его на стекло, жидкую ртуть или серебро.

Небольшой исторический экскурс

Законы преломления и отражения света были сформированы и систематизированы еще в ІІІ в. до н. э. Их разработал Евклид.

Человек установивший законы отражения света

Евклид

Все законы (преломления и отражения), которые касаются данного физического явления, были установлены экспериментальным путем и легко могут подтвердиться геометрическим принципом Гюйгенса. По этому принципу любая точка среды, до которой может дойти возмущение, выступает в роли источника вторичных волн.
Рассмотрим существующие на сегодняшний день законы более детально.

Законы – основа всего

Закон отражения светового потока определяется как физическое явление, в ходе которого свет, направляющийся из одной среды в другую, на их разделе будет частично возвращен обратно.

Правила отражения света на границе разреза

Отражение света на границе раздела

Зрительный анализатор человека наблюдает свет в момент, когда луч, идущий от своего источника, попадает в глазное яблоко. В ситуации, когда тело не выступает в роли источника, зрительный анализатор может воспринимать лучи от иного источника, которые отражаются от тела. При этом световое излучение, падающее на поверхность объекта, может изменить направление своего дальнейшего распространения. В результате этого тело, которое отражает свет, будет выступать в роли его источника. При отражении часть потока будет возвращаться в первую среду, из которой он первоначально направлялся. Здесь тело, которое отразит его, станет источником уже отраженного потока.
Существует несколько законов для данного физического явления:

  • первый закон гласит: отражающий и падающий луч, вместе с перпендикулярной линией, возникающей на границе раздела сред, а также в восстановленной точке падения светового потока, должны располагаться в одной плоскости;

Обратите внимание! Здесь подразумевается, что на отражательную поверхность предмета или вещества падает плоская волна. Ее волновые поверхности являются полосками.

Законы отражения света

Первый и второй закон

  • второй закон. Его формулировка имеет следующий вид: угол отражения светового потока будет равен углу падения. Это связано с тем, что они обладают взаимно перпендикулярными сторонами. Беря во внимание принципы равенства треугольников, становится понятным, откуда берется это равенство. Используя данные принципы можно легко доказать то, что эти углы находятся в одной плоскости с проведенной перпендикулярной линией, которая была восстановлена на границе разделения двух веществ в точке падения светового луча.

Эти два закона в оптической физике являются основными. При этом они справедливы и для луча, имеющего обратный ход. В результате обратимости энергии луча, поток, распространяющийся по пути ранее отраженного, будет отражаться аналогично пути падающего.

Закон отражения на практике

Проверить исполнение данного закона можно на практике. Для этого необходимо направить тонкий луч на любую отражающую поверхность. В этих целях отлично подойдет лазерная указка и обычное зеркало.

Падение и отражение света

Действие закона на практике

 

Направляем лазерную указку на зеркало. В результате этого лазерный луч отразится от зеркала и распространится дальше в заданном направлении. При этом углы падающего и отраженного луча будут равны даже при обычном взгляде на них.

Обратите внимание! Свет от таких поверхностей будет отражаться под тупым углом и дальше распространяться по низкой траектории, которая расположена достаточно близко к поверхности. А вот луч, который будет падать практически отвесно, отразится под острым углом. При этом его дальнейший путь будет практически аналогичным падающему.

Как видим, ключевым моментом данного правила является тот факт, что углы необходимо отчитывать от перпендикуляра к поверхности в месте падения светового потока.

Обратите внимание! Этому закону подчиняется не только свет, но и любые виды электромагнитных волн (СВЧ, радио-, рентгеновские волны и т.п ).

Особенности диффузного отражения

Многие предметы могут только отражать падающее на их поверхность световое излучение. Отлично освещенные объекты хорошо видны с разных сторон, так как их поверхность отражает и рассеивает свет в разных направлениях.

Демонстрация диффузного отражения объектов

Диффузное отражение

Такое явление называется рассеянным (диффузным) отражением. Это явление образуется при попадании излучения на различные шероховатые поверхности. Благодаря ему мы имеем возможность различать объекты, которые не имеют способности испускать свет. Если рассеивание светового излучения будет равно нулю, то мы не сможем увидеть эти предметы.

Обратите внимание! Диффузное отражение не вызывает у человека дискомфорта.

Отсутствие дискомфорта объясняется тем, что не весь свет, согласно вышеописанному правилу, возвращается в первичную среду. Причем этот параметр у разных поверхностей будет различным:

  • у снега – отражается примерно 85% излучения;
  • у белой бумаги — 75%;
  • у черного цвета и велюра — 0,5%.

Если же отражение идет от шероховатых поверхностей, то свет будет направляться по отношению друг к другу хаотично.

Особенности зеркального отображения

Зеркальное отражение светового излучения отличается от ранее описанных ситуаций. Это связано с тем, что в результате падения потока на гладкую поверхность при определенном угле они будут отражаться в одном направлении.

Пример зеркальных отражений света от объектов

Зеркальное отражение

Это явление можно легко воспроизвести, используя обычное зеркало. При направлении зеркала на солнечные лучи, оно будет выступать в роли отличной отражающей поверхности.

Обратите внимание! К зеркальным поверхностям можно отнести целый ряд тел. К примеру, в эту группу всходят все гладкие оптические объекты. Но такой параметр, как размеры неровностей и неоднородностей у этих объектов будут составлять менее 1 мкм. Величина длины волны света составляет примерно 1 мкм.

Все такие зеркальные отражающие поверхности подчиняются ранее описанным законам.

Использование закона в технике

На сегодняшний день в технике достаточно часто применяются зеркала или зеркальные объекты, имеющие изогнутую отражающую поверхность. Это так называемые сферические зеркала.
Подобные объекты представляют собой тела, которые имеют форму сферического сегмента. Для таких поверхностей характерно нарушение параллельности лучей.
На данный момент существуют два типа сферических зеркал:

  • вогнутые. Они способны отражать световое излучение от внутренней поверхности своего сегмента сферы. При отражении лучи собираются здесь в одной точке. Поэтому их часто еще называют «собирающими»;
Отражения света от вогнутого зеркала

Вогнутое зеркало

  • выпуклые. Для таких зеркал характерно отражение излучения от наружной поверхности. В ходе этого происходит рассеивание в стороны. По этой причине такие объекты получили название «рассеивающие».
Отражения света от выпуклого зеркала

Выпуклое зеркало

При этом существует несколько вариантов поведения лучей:

  • паление почти параллельно поверхности. В данной ситуации он лишь немного касается поверхности, а отражается под очень тупым углом. Далее он идет по достаточно низкой траектории;
  • при ответном падении, лучи отбиваются под острым углом. При этом, как мы говорили выше, отраженный луч будет следовать по пути очень близкому падающему.

Как видим, закон исполняется во всех случаях.

Заключение

Законы отражения светового излучения очень важны для нас, поскольку они являются основополагающими физическими явлениями. Они нашли обширное применение в различных сферах человеческой деятельности. Изучение основ оптики происходит еще в средней школе, что лишний раз доказывает важность таких базовых знаний.

 

Полезные материалы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *