Как сделать самодельный блок питания из энергосберегающего типа ламп

 

Современные люминесцентные лампочки – настоящая находка для экономных потребителей. Они светят ярко, работают дольше лампочек накаливания и потребляют гораздо меньше энергии. На первый взгляд – одни плюсы. Однако из-за несовершенства отечественных электросетей они исчерпывают свой ресурс гораздо раньше сроков, заявленных производителями. И часто они даже не успевают «покрыть» затраты на их приобретение.
Но не торопитесь выбрасывать вышедшую из строя «экономку». Учитывая немалую начальную стоимость люминесцентных лампочек целесообразно «выжать» из них максимум, используя до последнего все возможные их ресурсы. Ведь прямо под спиралью в ней установлена схема компактного высокочастотного преобразователя. Для человека знающего — это целый «Клондайк» всевозможных запчастей.

Внутренние части лампы

Разобранная лампа

Общие сведения

Элемент питания энергосберегающей лампы

Элемент питания

По сути, такая схема является практически готовым импульсным блоком питания. Не хватает в нём только разделительного трансформатора с выпрямителем. Поэтому, если колба цела, можно не боясь ртутных испарений, попытаться разобрать корпус.
Кстати именно осветительные элементы лампочек чаще всего выходят из строя: из-за выгорания ресурса, нещадной эксплуатации, слишком низких (или высоких) температур и т.д. Внутренние платы более-менее защищены герметичным корпусом и деталями с запасом прочности.
Советуем перед началом ремонтно-восстановительных работ поднакопить некоторое количество ламп (можете поспрашивать на работе или у знакомых – обычно такого добра везде хватает). Ведь не факт что все они будут ремонтопригодны. В данном случае нам важна именно работоспособность балласта (т.е. платы, встроенной внутри лампочки).

Возможно, в первый раз и придётся немного покопаться, но зато потом вы за час сможете собрать примитивный блок питания для устройств, подходящих по мощностям.
Если Вы планируете создавать блок питания, выбирайте модели люминесцентных ламп помощнее, начиная от 20 Вт. Впрочем, менее яркие лампочки тоже пойдут в ход — они могут использоваться как доноры нужных деталей.
И в результате из пары-тройки сгоревших экономок вполне можно создать одну вполне дееспособную модель, будь то рабочая лампочка, блок питания или зарядное устройство для аккумуляторов.
Чаще всего мастера-самоучки используют балласт экономок для создания 12-ваттных блоков питания. Они могут подключаться к современным светодиодным системам, ведь 12 V – это рабочее напряжение большинства самых распространённых в быту приборов, в том числе и осветительных.
Такие блоки обычно прячутся в мебели, поэтому внешний вид узла особого значения не имеет. И даже если внешне поделка получится неаккуратной – ничего страшного, главное позаботиться о максимальной электробезопасности. Для этого тщательно проверяйте созданную систему на работоспособность, оставляя поработать её в тестовом режиме на продолжительное время. Если скачков напряжения и перегрева не наблюдается – значит, Вы всё сделали правильно.
Понятно, что намного жизнь обновлённой лампочке вы не продлите — всё равно рано или поздно ресурс исчерпывается (выгорает люминофор и нить накала). Но согласитесь, почему бы не попытаться восстановить вышедшую из строя лампу в течение полугода-года после покупки.

Разбираем лампу

Итак, берём нерабочую лампочку, находим место стыка стеклянной колбы с пластиковым корпусом. Аккуратно поддеваем половинки отвёрткой, постепенно продвигаясь по «пояску». Обычно эти два элемента соединены пластиковыми защёлками, и если вы собираетесь ещё как-нибудь использовать обе составляющие, не прикладывайте больших усилий — кусок пластика может легко отколоться, и герметичность корпуса лампочки будет нарушена.

Вскрыв корпус, осторожно рассоедините контакты, идущие от балласта к нитям накала в колбе, т.к. они блокируют полноценный доступ к плате. Часто они просто примотаны к штырькам, и если Вы не планируете больше использовать вышедшую из строя колбу, можете смело отрезать соединительные проводки. В результате перед вами должна предстать примерно такая схема.

Процесс разборки лампы

Разборка лампы

Понятно, что конструкции ламп от разных производителей могут отличаться «начинкой». Но общая схема и базовые составляющие элементы имеют много общего.
Затем нужно скрупулёзно осмотреть каждую деталь на предмет вздутий, пробоев, убедитесь в надёжности пайки все элементов. Если какая-то из деталей перегорела, это будет сразу видно по характерной копоти на плате. В случаях, когда видимых дефектов не обнаружено, но при этом лампа является нерабочей, воспользуйтесь тестером и «прозвоните» все элементы цепи.
Как показывает практика, чаще всего страдают резисторы, конденсаторы, динисторы из-за больших перепадов напряжения, которые с незавидной регулярностью возникают в отечественных сетях. Кроме того частые щёлканья выключателем крайне негативно сказываются на продолжительности работы люминесцентных лампочек.
Поэтому чтобы максимально надолго продлить им время эксплуатации, старайтесь как можно реже включать их и выключать. Сэкономленные на электроэнергии копейки в итоге выльются в сотни рублей на замену раньше времени выгоревшей лампочки.

Внутренние части лампы

Разобранные лампы

Если в результате первичного осмотра вы выявили подпалины на плате, вздутие деталей, попробуйте заменить вышедшие из строя блоки, взяв их у других нерабочих лампочек-доноров. После установки деталей ещё раз «прозвоните» тестером все составляющие платы.
По большому счёту из балласта нерабочей люминесцентной лампочки можно изготовить импульсный блок питания мощностью, соответствующей исходной мощности лампы. Как правило, маломощные блоки питания, не требуют существенных доработок. А вот над блоками большей мощности, конечно, придётся попотеть.
Для этого нужно будет немного расширить возможности родного дросселя, снабдив его дополнительной обмоткой. Вы можете регулировать мощность создаваемого блока питания, увеличивая число вторичных витков на дросселе. Хотите узнать, как это следует делать?

Подготовительные работы

В качестве примера — ниже приведена схема люминесцентной лампочки Vitoone, но принципиально состав плат от разных производителей отличается не сильно. В данном случае представлена лампочка достаточной мощности – 25 ватт, из неё может получиться отличный зарядный блок на 12 В.

Устройство люминесцентной лампы Vitoone 25W

Схема лампы Vitoone 25W

Часть устройства блока питания

Сборка блока питания

Красным цветом на схеме обозначен осветительный узел (т.е. колба с нитями накала). Если нити в нём перегорели, тогда эта часть лампочки нам больше не понадобится, и можно смело откусить контакты от платы. Если лампочка всё же горела перед поломкой, хоть и тускло, можно потом попытаться реанимировать её на какое-то время, подсоединив к рабочей схеме с другого изделия.
Но речь сейчас не об этом. Наша цель — создать блок питания с балласта, добытого из лампочки. Итак, удаляем все что находится между точками А и А´ на приведённой выше схеме.
Для блока питания небольшой мощности (приблизительно равной исходной у лампочки-донора) достаточно лишь небольшой переделки. На месте удалённого лампочного узла нужно установить перемычку. Для этого просто примотайте новый отрезок провода к освободившимся штырькам — на месте крепления бывших нитей накала энергосберегающей лампочки (или к отверстиям под них).

В принципе Вы можете попытаться немного повысить генерируемую мощность, снабдив дополнительной (вторичной) навивкой уже имеющийся на плате дроссель (он обозначен на схеме как L5). Таким образом, его родная (заводская) навивка становится первичной, а ещё один слой вторичной — обеспечивает тот самый резерв мощности. И опять же, его можно регулировать количеством витков или толщиной навиваемого провода.

Схема и реальный блок питания

Подключение блока питания

 

Но, понятно, намного нарастить исходные мощности не удастся. Всё упирается в размеры «рамки» вокруг ферритов – они весьма ограничены, т.к. изначально предполагались для использования в компактных лампах. Зачастую удаётся нанести витки только в один слой, восьми – десяти для начала будет достаточно.
Старайтесь накладывать их равномерно по всей площади феррита, чтобы получить максимальную производительность. Такие системы очень чувствительны к качеству навивки и будут неравномерно нагреваться, и в конце-концов придут в негодность.
Рекомендуем на время проведения работ выпаять со схемы дроссель, так как иначе выполнить намотку будет нелегко. Очистите его от заводского клея (смол, плёнок и т.д.). Визуально оцените состояние провода первичной намотки, проверьте целостность феррита. Так как если они повреждены, нет смысла в дальнейшем продолжать с ним работать.
Перед началом вторичной намотки проложите по верху первичной обмотки полоску бумаги или электрокартона, чтобы исключить вероятность пробоя. Липкая лента в данном случае не самый лучший вариант, так как со временем клеевой состав оказывается на проводах и ведёт к коррозии.
Схема доработанной платы из лампочки будет выглядеть так

Устройство импульсного блока питания из КЛЛ

Схема доработаной платы из лампочки

Многие не понаслышке знают, что делать обмотку трансформатора своими руками то ещё удовольствие. Это скорее занятие для усидчивых. В зависимости от количества слоёв на это можно потратить от пары часов, до целого вечера.
Ввиду ограниченности пространства дроссельного окна для создания вторичной обмотки рекомендуем использовать лакированный медный кабель, сечением 0,5 мм. Потому что проводам в изоляции там просто не хватит места для навивки сколько-нибудь значимого количества витков.
Если надумаете снять изоляцию с имеющегося у вас провода, не пользуйтесь острым ножом, т.к. после нарушения целостности внешнего слоя обмотки на надёжность такой системы придётся только надеяться.

Кардинальные преобразования

В идеале для вторичной обмотки нужно брать такой же тип провода, как и в исходном заводском варианте. Но часто «окно» магнитоприёмника дросселя настолько узкое, что не получается даже намотать один полноценный слой. А ещё ведь обязательно нужно учитывать толщину прокладки между первичной и вторичной обмоткой.
В результате кардинально изменить мощности, выдаваемые схемой лампы, без внесения изменений в состав компонентов платы не получится. Кроме того, насколько бы аккуратно вы не выполняли намотку, сделать её так качественно, как в моделях, произведённых заводским способом, вам всё равно не удастся. И в данном случае проще тогда собрать импульсный блок с нуля, чем переделывать «добро», добытое бесплатно из лампочки.
Поэтому рациональнее поискать на разборках старой компьютерной или телерадиотехники готовый трансформатор с искомыми параметрами. Он выглядит намного компактнее, чем «самоделка». Да и запас прочности его не идёт ни в какое сравнение.

Необходимый элемент для блока питания

Трансформатор

И Вам не придётся ломать голову над расчётами количества витков для получения желаемой мощности. Припаял к схеме – и готово!
Поэтому если мощность блока питания нужна бóльшая, скажем порядка 100 Вт, тогда придётся действовать радикально. И только имеющимися в лампах запчастями тут не обойтись. Так если Вы хотите ещё больше повысить мощность блока питания, необходимо выпаять и удалить с платы лампочки родной дроссель (обозначен на схеме ниже как L5).

Устройство импульсного блока питания из КЛЛ

Подробная схема ИБП

Подключение трансформатора к плате

Подключенный трансформатор

Затем на участке между прежним местом дросселя и реактивной средней точкой (на схеме этот отрезок находится между разделительными конденсаторами С4 и С6) подсоединяется новый мощный трансформатор (обозначен как TV2). К нему, при необходимости, подсоединяется выходной выпрямитель, состоящих из пары соединительных диодов (они обозначены на схеме как VD14 и VD15). Не помешает попутно заменить на более мощные и диоды на входном выпрямителе (на схеме это VD1-VD4).
Не забудьте также установить более ёмкий конденсатор (показан на схеме как С0). Подбирать его нужно из расчёта1 микрофарад на 1 Вт выходной мощности. В нашем случае был взят конденсатор на 100 mF.
В результате мы получаем вполне дееспособный импульсный блок питания из энергосберегающей лампы. Собранная схема будет выглядеть примерно так.

Пробный пуск

Собрав схему согласно нашим рекомендациям, можно приступать к пробным испытаниям. Обычно при этом используется обычная лампочка накаливания, мощностью, соответствующей изготовленному блоку питания.

Проверка блока питания

Пробный пуск

Подключённая к цепи, она служит чем-то сродни предохранителя стабилизатора и оберегает блок при перепадах токов и напряжения. Если всё хорошо, лампа особо никак не влияет на работу платы (из-за низкого сопротивления).
Зато при скачках высоких токов сопротивление лампы возрастает, нивелируя негативное воздействие на электронные компоненты схемы. И даже если вдруг лампа сгорит — её будет не так жалко, как собственноручно собранный импульсный блок, над которым вы корпели несколько часов.
Самая простая схема проверочной цепи выглядит так.

Подключение блока питания к сети

Запустив систему, понаблюдайте, как меняется температура трансформатора (или обмотанного «вторичкой» дросселя). В том случае если он начинает сильно нагреваться (до 60ºС), обесточьте цепь и попробуйте заменить провода обмотки аналогом с большим сечением, или же увеличьте количество витков. То же самое касается и температуры нагрева транзисторов. При существенном её росте (до 80ºС) следует снабдить каждый из них специальным радиатором.
Вот в принципе и всё. Напоследок напоминаем Вам о соблюдении правил безопасности, так как на выходе напряжение очень высокое. Плюс ко всему компоненты платы могут сильно нагреваться, никак не меняясь при этом внешне.

Также не советуем использовать такие импульсные блоки при создании зарядных устройств для современных гаджетов с тонкой электроникой (смартфонов, электронных часов, планшетов и т.д.). Зачем так рисковать? Никто не даст гарантию что «самоделка» будет работать стабильно, и не угробит дорогостоящее устройство. Тем более что подходящего добра (имеется в виду готовых зарядок) более чем предостаточно на рынке, и стоят они совсем недорого.
Такой самодельный блок питания может безбоязненно использоваться для подключения лампочек разных видов, для запитки LED-лент, несложных электроприборов, не столь чувствительных к скачкам токов (напряжения).

Надеемся, Вы смогли осилить весь приведённый материал. Возможно, он вдохновит вас попробовать создать нечто подобное самостоятельно. Пусть даже первый блок питания, сделанный вами из платы лампочки, сначала и не будет реальной рабочей системой, зато Вы приобретёте базовые навыки. И главное – азарт и жажду творчества! А там, глядишь, и получится сделать из подручных материалов полноценный блок питания для светодиодных лент, весьма популярных сегодня. Удачи!

 

Полезные материалы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *